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We consider finite-amplitude acoustic disturbances propagating through media in 
which relaxation mechanisms, such as those associated with the vibration of polyatomic 
molecules, are significant. While the effect of these relaxation modes is to inhibit the 
wave steepening associated with nonlinearity, whether a particular mode is sufficient to 
prevent the occurrence of multi-valued solutions will depend on the form of the 
disturbance and on the characteristic parameters of the relaxation. Analysis of this 
condition is necessary in order to reveal which physical mechanisms actually determine 
the evolution of the wave profile. This then dictates the scaling of any embedded shock 
regions. Sufficient conditions for the occurrence of multi-valued solutions are obtained 
analytically for periodic waves, hence proving that in certain circumstances relaxation 
is in fact insufficient in fully describing the wave propagation. A much more precise 
criterion is then obtained numerically. This uses the techniques described in Part 1 
for analysing the phenomenon of wave overturning using intrinsic coordinates. 
Illustrations are provided of the development of a harmonic signal for different 
classes of material parameters. 

1. Introduction 
In Part 1 (Hammerton & Crighton 1993), a method of solving nonlinear wave 

equations using an intrinsic coordinate method was described. Using such a method, 
the existence, or otherwise, of multi-valued solutions can be determined. While such 
multi-valued solutions are meaningless in a physical context, their appearance does 
point to a breakdown in the model equation, and hence the increased importance of 
some physical mechanism previously ignored. In this paper we use these methods to 
investigate finite-amplitude acoustic propagation through relaxing media. The essential 
feature of a relaxing fluid is that the partition of energy among the available modes 
does not respond instantaneously to changes imposed by a time-dependent flow. Each 
physical relaxation mode has a characteristic timescale, and if the relaxation time 
associated with a particular physical process is comparable to the disturbance 
timescale, then the effect of relaxation must be accounted for in determining the 
evolution of the disturbance. 

For a gaseous medium, it is the partition of internal vibration energy within 
polyatomic molecules that gives rise to significant relaxation effects. For air, relaxing 
modes associated with 0, and N, are dominant, though both relaxation times are very 
sensitive to the presence of H,O. Thus acoustic propagation through the atmosphere 
is affected by humidity (see, for example, Pierce 198 1, p. 554). For acoustic propagation 
through seawater, relaxation processes are chemical in origin rather than physical. 
Pressure-dependent chemical relaxations can lead to absorption and dispersion of 
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sound, and for salt water it has been found that MgSO, (magnesium sulphate) and 
B(OH), (boric acid) are the main contributors to relaxation processes even though they 
are present only in extremely low concentrations. A discussion of relaxation effects in 
seawater, including numerical parameter values, is given in Fisher & Simmons (1977). 
In addition, relaxation effects arise in acoustic propagation through aerosols or dusty 
gases, where a solid phase of fine rigid particles exists within a gaseous phase. Two 
relaxation processes are present here: the adjustment of the particle velocity to the 
surrounding gas velocity, and the temperature adjustment of the particles to the 
gaseous surroundings. Though the origin of the relaxing mode is very different in each 
of the above cases, the effect on the propagation of a disturbance through such media 
is the same. 

Compared to the bulk of literature available for finite-amplitude propagation when 
thermoviscous diffusion is the dominant attenuation mechanism, much less attention 
has been paid to media in which relaxation mechanisms are significant. The governing 
equations were derived independently by Polyakova, Soluyan & Khokhlov (1962), 
Blythe (1969) and Ockendon & Spence (1969) for media in which a single time 
characterizes the rate of change of all the non-equilibrium variables. However, analysis 
was essentially restricted to travelling wave solutions describing the propagation of a 
forward-facing step, the analogue of Taylor’s solution for a diffusion-resisted shock. A 
condition for the existence of such solutions was obtained in terms of the shock 
amplitude and the material parameters. In cases where the amplitude is too large for 
the nonlinear wave steepening to be adequately balanced by relaxation alone, diffusion 
becomes locally significant with the formation of a thin viscous sub-shock, and we have 
a partly dispersed relaxation shock (Lighthill 1956). In this paper we consider the 
propagation of periodic disturbances and investigate the conditions for which 
relaxation mechanisms dominate throughout, when the solution to the nonlinear wave 
equation including only relaxation processes remains single-valued and the wave 
remains fully dispersed. For a sinusoidal wave, conditions are accurately determined 
in terms of the signal amplitude, the signal frequency and the material parameters. The 
situation envisaged here is of acoustic propagation away from a harmonically 
oscillating piston, after any transient behaviour associated with the initial starting 
motion of the piston has died away. The corresponding start-up problem is dealt with 
by Johannesen & Scott (1978), and is much simpler, because only conditions near the 
leading characteristic (with the infinite-frequency ‘ frozen ’ sound speed) need be 
considered. In the steady-state response considered in this paper, no such limitation 
can be justified, and the overturning problem is a global one. 

In $2, the governing equation for finite-amplitude propagation through a relaxing 
medium is introduced. The standard travelling wave solutions for media with only one 
relaxation mode are reproduced to provide some insight into the effect of relaxation on 
periodic disturbances. In 3 3, conditions suficient to ensure that wave overturning 
occurs are derived using functional analysis arguments. Hence it is proved that 
relaxation alone can be insufficient in balancing nonlinear steepening and that other 
physical processes must become significant, as opposed to merely proving that single- 
valued travelling wave solutions do not exist. In $4, a very much more precise criterion 
for wave overturning to occur is obtained numerically for sinusoidal signals, using the 
intrinsic coordinate approach detailed in Part 1. 
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2. Governing equation and travelling wave solutions 
When considering the effect of relaxation processes on the propagation of a 

disturbance through a medium, the magnitude of each relaxation time relative to the 
characteristic disturbance timescale becomes an important parameter. Analysis of the 
linear propagation of a harmonic disturbance, with relaxation effects included, reveals 
that phase velocity for the signalling problem increases monotonically with signal 
frequency, from a, to am. At low frequency, the effect of relaxation is small since the 
adjustment to thermal equilibrium is virtually instantaneous; hence a,, the low- 
frequency sound speed, is also known as the equilibrium sound speed. At the other end 
of the scale, for a very high-frequency signal, the internal vibration energy of the 
particular molecular species can never adjust to the change in equilibrium and is 
frozen; hence a, is known as the frozen sound speed. Attenuation per wavelength 
peaks at a signal frequency equal to the relaxation frequency. Lighthill (1956) gives 
general expressions for attenuation and phase-velocity due to relaxation. 

With the inclusion of these linear relaxation effects in the derivation of the nonlinear 
wave equation, the evolution of a right-running disturbance, referred to a frame 
moving at the equilibrium sound speed, is given by the non-dimensional equation 

ut + uu, = AM,, - C K,, eeIRo e-B'fov uWe. d0'. (2.1) 

Here u = 6/U, ,  0 = (R-a, $w/a , ,  t = fw(y+ 1) U0/2a,, where U, is the maximum 
signal amplitude, w a typical signal frequency, y the adiabatic exponent or an 
equivalent parameter for condensed fluids, and l i ,  R, f are the dimensional signal 
amplitude, spatial coordinate and time, respectively. Three dimensionless parameters 
arise : 

V r 

where 7, is the relaxation time for species v and (Aa), the difference between frozen and 
equilibrium sound speeds due to species v. It should be noted that 52, depends only on 
the identity of the species v, while K,, also depends on its relative concentration. 
The model equation is valid only if the changes in wave shape occur over a large 
number of wavelengths, which requires that nonlinear effects are small ( U,/a, 4 l), 
diffusion is small (&/at + l), and finally that the energy in each relaxation mode 
is small ((Aa),/a, 4 1). However, it can be seen that these conditions place no 
restriction on the magnitude of the parameters defined in (2.2). 

The remainder of this paper is concerned with acoustic propagation through a 
medium characterized by a single relaxation time, when the non-dimensional model 
wave equation (2.1) can be written 

(2.3) 

where r = K52. This is the form considered in the past by Blythe (1969) and Ockendon 
& Spence (1969); in both papers an exact travelling wave solution is obtained for the 
case A = 0. Writing u(0, t )  as V(q5), where q5 = 0-3, V is given implicitly by 

W1(q5+q5,) = (1+2K)ln(l- V)+(1-2K)ln V. (2.4) 

For K > t ,  V($) is smooth with V+ 1 as $+-a0 and V+O as q5+ 00. Thus the 
solution describes a steadily translating pressure step, such as that due to a compressive 
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piston moving at constant speed. In dimensional quantities this condition is equivalent 
to U,, < 4(Aa)/(y+ l), which is the well-established condition for a fully dispersed 
relaxing shock - see Lighthill (1956). At the critical value K = f, the gradient of the 
profile is discontinuous at the head of the shock, and the velocity of the shock front 
is the frozen sound speed a,. For K < i, the boundary condition ahead of the 
disturbance cannot be satisfied and no such travelling wave solution exists. In the latter 
case the inclusion of diffusivity ensures a single-valued solution, with the appearance 
of a sub-shock, the width of which scales with A .  The remainder of this paper is 
concerned with the low diffusivity limit ( A  < 1) for periodic disturbances. Conditions 
on Q and r are determined for which the term Au,, can be ignored throughout, in 
comparison to those cases in which viscosity becomes locally significant and introduces 
a new, shorter lengthscale into the wave profile. In other words, we seek the region of 
the (Q, f )-plane in which the wave remains fully dispersed throughout its evolution. 

3. Sufficient conditions for wave overturning 
In this section, we prove that a periodic waveform propagating through a relaxing 

will become multi-valued in finite time for certain values of the two relaxation 
parameters r and Q. If r = 0, relaxation effects are absent and the inviscid Burgers 
equation is obtained, leading to overturning for any initial profile with portions of 
negative slope. However, here we determine conditions on the two parameters for finite 
rate relaxation which, if satisfied, still result in the occurrence of multi-valued 
solutions. Thus it is proved, analytically, that under certain conditions linear 
attenuation and dispersion due to relaxation effects alone are not sufficient to prevent 
nonlinear wave overturning. The method used to study this issue is an adaptation of 
one used by Hunter (1989) in the context of high-frequency water waves on a very 
shallow rotating fluid. 

Here we restrict attention to an initially sinusoidal disturbance, u,(@ = sin0. An 
analysis for more general initial data is presented elsewhere (Hammerton 1990). 
Changing to a frame moving with the frozen sound speed, we have 

where 
r Z($, t )  = lu($’, t)e-@’/’d$‘ and $ = tl--t. i2 (3 3) 

Setting u,(t) = sup ( ~ ( 4 6 ,  t)l we see that 

and then it follows that du,/dt G 0. Thus, the wave amplitude decreases monotonically 
with time, and so 

IL($, ti1 G 2r/fz2. (3.5) 
With the right-hand side of (3.2) bounded, the characteristic form of (3.2) can now be 
used to obtain conditions for which wave overturning will occur. 
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Using Z as the characteristic variable, and expressing all terms as functions of Z and 
t by 

@ = X(Z, t ) ,  u = W(Z, t), L = G(Z,  t), (3.6) 

the governing equations obtained, together with initial conditions, are 

x, = w, X(Z,O) = z, 1 
= G, W(Z,O) = u,,(Z).J (3.7) 

The function u(@,t) becoming a multi-valued function at some finite time t* 
corresponds to the characteristic variable taking more than one value for some @ at 
that t*. Since X,(Z, 0) = l , Z  becomes a multi-valued function of # if X,(Z, t* )  c 0 for 
some 2. The remainder of this analysis is concerned with finding a range of parameter 
values for which this certainly happens. 

Introducing the notation 

Zl(Z, t )  = G,(Z, s) ds and Iz(Z, t )  = G,(Z, v) dv ds, (3.8) 

x, = 1+tu;+z2. (3.9) 

L L 1: 
the integration of (3.7), and elimination of W, gives an expression for X, :  

Thus if it can be proved that for some (2, t ) ,  the solution for G(Z,  t )  is such that 
tuh(Z) +Iz(Z,  t )  < - 1, then it will have been shown that the wave profile has become 
multi-valued by this time. For the relaxation equation (3.1), G ( 2 ,  t )  satisfies 

and hence a single equation governing the evolution of G(Z, t )  is obtained 

G r 
t u ~ + I z ) - ~ ( U ~ + I l ) .  sz 

(3.10) 

(3.1 1) 

Defining Z *  by uh(Z*) = - 1 and using the bound on \GI provided by (3.9, it readily 
follows that 

where C(t) = sup lGz(s)l. 
O < S $ t  

(3.12) 

(3.13) 

The right-hand side of this inequality is a monotonically increasing function of t ,  so it 
follows that C(t) also obeys this inequality. Thus C(t) satisfies 

($-t-;)C(t) ,< (;+1)+;. 

From (3.9) evaluated at Z = Z*, it follows that 

IX,(Z*, t )  + t - 1) ,< g t z ,  

and thus it can then be seen that if there exists t* > 0 such that 

(3.14) 

(3.15) 

(3.16) 
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then X,(Z*, t*) < 0. Conditions on 52 and r then follow from the requirement that the 

t * 3 + ; 5 2 t * 2 - 1  (3.17) 
cubic equation 

has three real roots, one of which must be greater than unity. Unfortunately, this does 
not yield a simple relationship between r and Q. However, by introducing new 

2(a + a 3 / / r )  t* + g ~ / r  = o 

parameters 
(3.18) 

the sufficient condition for multi-valued solutions to arise in the original equations is 
that 0 < @- < al, where a,@?) is the first positive zero of 

[1+ga+p)13-(a+1)2~+ 1 1 2  = 0. (3.19) 
In addition it can be shown that the time t ,  at which multi-valued solutions first occur 
satisfies 

[l +;(a+/?)]$- 1 
L% 

tc < (3.20) 

Solving (3.19) numerically, the condition for overturning is found to take the form 
r < P(Q). In the next section this sufficient condition, obtained by bounding 
arguments, is compared with the condition suggested by a full numerical investigation. 
It is to be expected that the former condition is extremely restrictive compared to the 
latter, bearing in mind the coarseness of the bounds taken at various points of the 
analysis. 

Before moving on to describe the numerical results, there is one interesting 
consequence of the conditions obtained by the functional analysis arguments provided 
here. Modifying the analysis slightly for a forward-facing step-like transition, it is 
found that even when a steadily translating solution exists (i.e. a fully dispersed 
relaxation shock exists), it is still possible for overturning to occur if the initial wave 
slope is very high; the smaller the relaxation parameters, the steeper the initial slope 
required to produce multi-valued solutions. More details are given in Hammerton 
(1990). Introducing a dimensional steepness parameter So, defined by 

so = --in($) 1 , 

uo i=O 
(3.21) 

then the condition for overturning becomes So > S*( Uo). S*( U,) is given implicitly by 

2 , u,=--- /?(A4 S*(U0) = - 
@-o 7% y f l '  

(3.22) 

where al(P) is defined as before, by (3.19). The curve S*(Uo) is plotted in the 
steepness-amplitude plane in figure 1. Whether a fully dispersed shock solution exists 
depends only on the disturbance amplitude. The critical value U,, = 4Aa/(y+ 1) is 
shown as the dotted line in figure 1, and it may be seen that in region A, steady 
travelling wave solutions exist, but wave overturning still occurs due to the steepness 
of the initial profile. For those values of Uo and So where travelling wave solutions exist, 
but the wave still becomes multi-valued, the long-range evolution of the disturbance is 
not immediately clear. A sub-shock embedded in the relaxation shock must arise at 
finite range. The most likely scenario is that the relaxation-dominated region 
subsequently evolves such that the magnitude of the sub-shock decreases and the fully 
dispersed travelling wave solution is finally attained. Whether this is indeed the case 
could be determined by numerical solution. However, the sub-shock, narrow compared 
with the relaxation shock, must be resolved accurately, making a numerical analysis 
computationally very expensive. 
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FIGURE 1. Classification of the different types of evolution of a step-like disturbance, depending on 
the amplitude Uo and initial wave steepness So. If So > S*(Uo) then multi-valued solutions will 
certainly occur. If Uo < U, = 4Aa/(y+ 1) then fully dispersed travelling wave solutions exist. Region 
A corresponds to conditions for which fully dispersed travelling wave solutions exist, but where wave 
overturning will still occur. 

The result that triple-valued solutions can occur, even when fully dispersed solutions 
exist, is consistent with the work of Naumkin & Shishmarev (1982, 1983) on the 
phenomenon of wave breaking in Whitham's equation, 

ut +uux + s", k ( x - y )  uJy, t )  dy = 0. (3.23) 

This equation describes the propagation of nonlinear waves in strongly dispersive 
media and was proposed by Whitham (1967) as a simple model to describe wave 
peaking and the breaking of waves. For sufficiently smooth kernels, k(x) ,  it can be 
shown that the nonlinear term prevails over the integral term so that a sufficiently steep 
wave will break in finite time. However, a strong enough singularity in the kernel can 
lead to the dominance of the integral term over the nonlinearity and hence wave 
overturning may be prevented. Naumkin & Shishmarev give various theorems 
concerning how the nature of the singularity of the kernel affects wave breaking. With 
suitable choice of kernel, namely 

(3.24) 

the relaxation equation governing the propagation of a smooth step transition can be 
written in the Whitham form. This kernel falls into a class for which Naumkin & 
Shishmarev (1982) conclude that overturning will occur in finite time as long as the 
initial wave slope is steep enough, exactly the conclusion of the above analysis. 
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Unfortunately, in the English translation of the original Russian paper, no proof of 
this theorem is given and no information is given on just how steep the initial gradients 
must be and how this criterion depends on the particular kernel. Thus no quantitative 
comparison can be made at present between estimates obtained in the present paper 
and this earlier work. 

Turning to the case of periodic disturbances, the governing equation (3.2) for a 
relaxing medium cannot be written in the Whitham form, and thus the results of 
Naumkin & Shishmarev do not seem directly applicable to the main problem addressed 
in this paper. 

4. Numerical results 

form of the governing (2.3) becoming 
For a periodic disturbance, the constraint of periodicity results in the integrated 

where 

and where the dimensionless parameters 52 and r = 52K are defined by (2.2). The 
diffusivity term has been dropped in order to establish when relaxation effects alone are 
sufficient to fully describe the wave evolution. Attention is restricted to an initially 
sinusoidal disturbance. With the governing equation written in the form (4. I), the 
intrinsic coordinate scheme described in Part 1 can immediately be utilized, with 

where f(s, t )  = r sin $ e-X(s')/R ds', X(s,  t )  = r cos $ ds' 
J o  J o  

It must be noted that if the wave were to overturn, then cos $(s) would be zero for some 
s and hence h(s, t )  would become infinite at this point. However it is clear that h cos $ 
remains finite and hence the intrinsic coordinate wave equation given by Part 1, 
equation (3.10b), rather than equation (3.10a), should be used for this particular 
governing equation. The set of equations (Part 1 : (3.lOb)-(3.12)) with initial conditions 
(Part 1 : (3.13)-(3.14)) were then integrated using the method described in Part 1 .  

With h(s, t )  given by (4.2), the resulting equations are much more complicated than 
those described in Part 1. Thus additional accuracy checks were performed by 
comparing results from the intrinsic coordinate formulation with solutions obtained 
directly from the physical equation (4.1) using a pseudo-spectral scheme. Choosing 
relaxation parameter values r = 0.5 and l2 = 0.75, the intrinsic coordinate formulation 
predicted wave overturning at t = 1.25, while the direct calculation began to break 
down at t z 1.2 with rapid growth in the highest spectral components. The results 
obtained by the two methods were compared prior to this breakdown. At t = 0.5 and 
1 .O the differences, relative to the wave amplitude, were found to be less than 0.25 %. 

For the most part we are only interested in the conditions for which overturning 
occurs. Thus attention is centred on the magnitude of the maximum slope, ~ l m a x ( t ) ,  as 
time changes. Assuming that nonlinear effects initially dominate, the magnitude of 
negative gradients will start to increase (wave steepening) and if l$max(t)l exceeds kn, 



Overturning of nonlinear acoustic waves. Part 2 

2 

r 

1 

0 

I 
A t  , 
, 

x 

Single-valued 
solutions 

1 

n 

609 

FIGURE 2. Summary of the results of 94 showing the bifurcation line in the (Q, r)-plane. Crosses mark 
the largest values o f f ,  at given 52, for which multi-valued solutions were obtained. Triangles mark 
the smallest values o f f ,  at given Q, for which it is predicted that the solution remains single-valued 
at all finite time. The dotted line marks the small-Q limit, r = Q. The dashed line marks the large- 
Q limit, f = Q2. The hatched region marks those parameter values for which it has been proved, in 
93, that multi-valued solutions occur. 

then overturning will have occurred. Proving that overturning does not occur in finite 
time is obviously more difficult. However, if l$ma..(t)l starts to decrease, corresponding 
to relaxation effects outweighing nonlinear steepening, it seems reasonable to assume 
that the maximum forward-facing slope will continue to decrease in magnitude. In the 
numerical investigation, it was asserted that if the maximum wave slope began to 
decrease, or obviously tended to a limit well below +!, then the wave would remain 
single-valued for all finite times. Use of this criterion evidently leaves some cases where 
the long-time behaviour is not fully determined, but this appears to be unavoidable. 

Without detailed investigation of the possibility of wave overturning, it is readily 
seen that for r = 0 the inviscid Burgers equation is obtained and wave overturning will 
occur whatever the value of 52, while for 52 = 0 (and r =t= 0) the full Burgers equation 
is obtained and the solution remains single-valued at all times. In addition it was 
proved in 6 3 that overturning occurs for non-zero values of the relaxation parameters. 
Thus some bifurcation line must exist dividing the (a, r)-plane into a region for which 
multi-valued solutions appear and a region for which the wave solution always remains 
single-valued. Using the intrinsic coordinate method, the position of this bifurcation 
line in parameter space can be determined. The results obtained are summarized in 
figure 2. Various values of 52 were chosen, then r was varied to obtain the largest value 
for which overturning occurred and the smallest value for which the presence of 
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FIGURE 3. Evolution of a sinusoidal disturbance as it propagates through a relaxing medium with 
52 = 0.5 and r = 0.25. These conditions result in the appearance of multi-valued solutions. 
(a-c) Intrinsic wave functions and (d-f) the corresponding physical waveforms. (a, d) t = 0.5; 
(b, e)  t = 1.0; ( c , f ?  t = 1.5. 

overturning could be discounted. It can be seen that the position of the bifurcation line 
is determined to a reasonable degree of accuracy. The problems in reducing the degree 
of uncertainty are discussed later in this section. 

In figures 3-5 the typical evolution of the intrinsic wave function and of the 
corresponding physical waveform is shown for different parameter values. In each case 
D is set to 0.5 and then various values of r are taken to illustrate the wave behaviour 
at different positions in the parameter space relative to the bifurcation line. Figures 3 
and 4 show the behaviour of the solution for parameter values well away from the 
bifurcation line. First it may be noted that in these cases the intrinsic wave function 
remains a fairly smooth function of arclength, corresponding to the absence of sharp 
changes in gradient of the real waveform. Second, it can be seen that for these 
parameter values there can be no element of doubt as to whether wave overturning has, 
or has not, occurred. In figure 3, with r = 0.25, overturning is readily identified, with 
the value of the intrinsic wave function passing below -in: over an appreciable spatial 
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FIGURE 4. Evolution of a sinusoidal disturbance as it propagates through a relaxing medium with 
Q = 0.5 and r = 0.6. These relaxation conditions ensure that the solution remains single-valued. 
(a-c) Intrinsic wave functions and (d-f) the corresponding physical waveforms. (a, d) t = 0.5;  
(b, e) t = 1.0; ( c , f )  t = 1.5. 

range. In figure 4, where r = 0.6, the maximum wave slope is initially seen to increase, 
but then steadily decrease and here it is clear that wave overturning will never occur. 
However, close to the dividing line, the situation becomes less clear-cut. This is 
demonstrated in figure 5 for r = 0.4. In this case, near-discontinuities appear in the 
intrinsic solution, with the largest slopes being confined to an extremely small region. 
Most importantly, these sharp changes in $ occur in the immediate neighbourhood of 
the maximum value of 111.1. Since we are interested in whether the maximum slope ever 
exceeds in, accuracy in evaluating $ in this region of rapid change is vital. Care was 
indeed taken to vary the temporal and spatial resolution to ensure that such variation 
in $ is genuinely prescribed by the governing equation and is not a numerical 
invention. The sharp changes in wave slope calculated correspond to the appearance 
of a near ‘kink’ in the physical waveform, which is similar to that at the head of a 
travelling shock at critical wave amplitude. While figures 3 c f )  and 5 0  do not 
represent realizable solutions of the full governing equations, they give a good idea of 
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FIGURE 5. Evolution of a sinusoidal disturbance as it propagates through a relaxing medium with 
SE = 0.5 and r = 0.4. (a-c) Intrinsic wave functions and (d-f) the corresponding physical waveforms. 
(u, d, I = 0.5; (b, e) I = 1.0; ( c , f )  t = 1.5. Very localized overturning of the wave is seen to occur. This 
corresponds to parameter values close to the bifurcation line. 

the overall wave shape, and where a sub-shock must be located, without requiring the 
very fine resolution needed to compute directly the physical waveform with embedded 

The behaviour of the solution close to the bifurcation line, as discussed above, is one 
reason why the bifurcation line cannot be determined exactly. In the large-9 limit, a 
different limitation is placed on the accuracy in determining the bifurcation line. 
Letting 52 ir 00, with a = T/Q2 held fixed, the Varley-Rogers equation is obtained 
(Part 1 : (2.4)). Solving this equation, a frozen waveform arises at large time. For an 
initially sinusoidal wave of unit amplitude the frozen wave will have overturned if 
a < 1, while if a > 1 the ultimate solution is single-valued. Hence r= 9' is the 
bifurcation line in this limit, and this is marked on figure 2 as the dashed line. Close 
to this line, the maximum wave slope increases very slowly to its frozen value, and 
hence accurate prediction of the position of the bifurcation line by intrinsic coordinates 
is difficult. However, the numerical results obtained do seem to be consistent with the 
Varley-Rogers limiting case. 

sub-shock. 
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In the limit 4 + 0, r = O(Q), the results obtained here can be compared with the 
asymptotic results of Crighton & Scott (1979). In this limit the relaxing shock is 
narrow, with its amplitude determined by the lossless outer solution. Analysis of the 
shock region suggests that if r < Q, then the solution becomes multi-valued. The 
bifurcation line r = Q is plotted in figure 2. In the light of the present analysis, this 
condition can be modified slightly. In 43 it was proved that the maximum wave 
amplitude decreases with time for non-zero relaxation. This suggests that the 
bifurcation line should in fact be T/Q = 1 - aQ + O(Q2), where a is positive. That the 
calculated bifurcation line does in fact lie below r/Q = 1 , in the small-Q limit, is clearly 
shown in figure 2. 

In summary, close to the bifurcation line, overturning is very much a local effect, but 
its occurrence depends on the global wave shape. Further away from the bifurcation 
line, if overturning does occur, it is less local and more akin to the standard nonlinear 
overturning in the absence of dispersion and attenuation. 

5. Conclusion 
In this paper, we have looked in detail at the role of relaxation effects in determining 

wave profiles. It has been shown that in some circumstances, a particular relaxation 
effect, though apparently the dominant mechanism on simple scaling arguments, is 
insufficient on its own to fully describe the nonlinear wave propagation. For a 
sinusoidal disturbance, two non-dimensional parameters enter the propagation 
problem, By analysing the phenomenon of wave overturning for such a problem, a 
condition on these parameters is obtained dictating whether other physical mechanisms 
must eventually become significant. In 9 3 sufficient conditions for multi-valued 
conditions to occur are determined by functional analysis arguments, while in $4 a 
more precise criterion for overturning is obtained using numerical results. The two sets 
of results are compared in figure 2, with the hatched region marking that part of 
parameter space for which overturning is rigorously predicted by the functional 
analysis arguments. As anticipated, the sufficiency conditions of $ 3 are extremely 
restrictive. Possibly the analysis of 93 should be interpreted more as a proof that under 
certain conditions, purely relaxing media cannot support single-valued solutions, 
rather than as a calculation of these conditions. 

In figure 6, the estimated position of the bifurcation line is plotted in the 
frequency-amplitude plane. This estimate corresponds to taking the curve approxi- 
mately bisecting the extreme values plotted in figure 2. Well above the bifurcation 
line, the relaxation effects are essentially negligible, only affecting the overall phase 
velocity of the signal. Wave overturning occurs at virtually the same point as if the 
relaxation mechanism were entirely ignored, and so other mechanisms must be 
included. Well below the bifurcation line, the relaxation manifests itself as an 
additional diffusion term with coefficient equal to r, and it is for this reason that 
physical mechanisms such as rotational energy effects can be included as an additional 
‘bulk’ term in the coefficient of diffusivity. Only in the neighbourhood of the 
bifurcation line must relaxation effects be considered in detail. 

At this point comparison may be made with other work on wave breaking in relaxing 
media. We have already looked at the small-Q asymptotic analysis of Crighton & Scott 
(1 979) ; a more general analysis of propagation through relaxing media is presented in 
a series of papers by Johannesen and co-workers. Johannesen & Scott (1978), address 
a problem similar to that examined in the present work, with the added complexity of 
non-planar geometries. The flow due to a plane or spherical piston oscillating 
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FIGURE 6. Estimated position of the bifurcation line for a harmonic disturbance, in terms of the signal 
amplitude (U,) and the signal frequency (w). The dashed lines show the large- and small-w asymptotic 
limits. 

harmonically is considered and conditions for wave breaking are obtained. However, 
the analysis is concerned only with the start-up problem; that is, the piston is set in 
motion at t = 0. The investigation is then limited to a local analysis of the head of the 
disturbance which propagates into the quiescent medium at the frozen sound speed. In 
the plane-wave case, the results obtained are identical to the high signal frequency 
(large-Q) results of the present paper. This is not a complete surprise since the analysis 
away from the piston is restricted to the neighbourhood of the frozen-sound-speed 
characteristic where only high-frequency components can be present at any distance 
from the piston. In Southern & Johannesen (1980) numerical solutions are provided for 
the nonlinear propagation of plane waves with relaxation effects included. These 
solutions are obtained by numerically integrating the system of three gasdynamic 
equations written in characteristic form. The start-up problem is considered and thus 
two sets of characteristics propagate into the quiescent medium. Results are provided 
for several wavelengths behind the head of the disturbance, where transient effects are 
assumed to be negligible. However, these results cannot be directly compared with the 
predicted wave profiles of the current paper, because Southern & Johannesen compute 
only cases where the energy in the relaxing mode is high, with the result that the model 
equation considered in the present paper becomes invalid. Qualitatively the waveforms 
are similar, with the appearance of significant asymmetry followed by a kink close to 
the wave trough. Beyond this point, where our intrinsic coordinate results predict wave 
overturning, Southern & Johannesen see the appearance of a local oscillation in the 
wave trough. This difference in wave shape is most likely to be due to a different 
relaxation effect being modelled, but may be associated with the transient effect of 
start-up. Any attempt to solve the exact problem considered in the present paper using 
characteristics stumbles on the enforced condition of periodicity. 

Finally, the correct physical interpretation of the results contained herein must be 
reiterated. Inclusion of relaxation with no diffusion whatsoever is not physically 
realistic, since those molecular vibration modes excluded from the relaxation terms due 
to their almost instantaneous response act as bulk viscosity terms. However, 
identification of wave overturning in a model equation containing just one relaxing 
mode points to another physical effect, with an associated lengthscale, becoming 
significant. Only by an analysis such as that presented here can all the relevant physical 
processes be identified, together with the associated scalings entering the fine structure 
of the wave. 
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